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Abstract

Are we going through a Fourth Industrial Revolution or a technological break-
through event of an entirely different nature? In this paper, based on the hard-
ware-software framework [Growiec, 2022; Growiec, Jabłońska, Parteka, 2023], 
I identify the key differences between the technologies of the Industrial Revolu-
tion (expanding our capacity to perform physical action) and the Digital Revolu-
tion (expanding our capacity to process information). I discuss the implications 
of these technologies for long-run economic growth, technological progress and 
factor demand. I find that these implications depend on the possibility of full 
automation of production processes, the extent of technology spillovers in R&D, 
and the rate of technological decay. Full automation is disruptive because it makes 
human labour inessential for production, potentially leading to technological 
unemployment as well as growth acceleration. Under positive technology spillovers 
in R&D, technological progress and the accumulation of R&D capital can form 
a dual growth engine, sustaining exponential growth even under partial automa-
tion and without population growth. As an application of the theory, I overview 
the effects of specific existing and hypothetical digital-era technologies, from the 
Jacquard loom to artificial superintelligence, for the pace of long-run growth and 
predicted trends in employment and factor shares.

Streszczenie

Czy przechodzimy właśnie przez czwartą rewolucję przemysłową czy też przełom 
technologiczny zupełnie innego rodzaju? W tym artykule, opierając się na modelu 
hardware-software [Growiec, 2022; Growiec, Jabłońska, Parteka, 2023], identy-
fikuję kluczowe różnice między technologiami rewolucji przemysłowej (rozsze-
rzającymi naszą zdolność do wykonywania działań fizycznych) a technologiami 
rewolucji cyfrowej (rozszerzającymi naszą zdolność do przetwarzania informacji). 
Omawiam konsekwencje tych technologii dla długoterminowego wzrostu gospo-
darczego, postępu technologicznego i popytu na czynniki produkcji. Stwierdzam, 
że konsekwencje te zależą od możliwości pełnej automatyzacji procesów produk-
cyjnych, zakresu efektów ubocznych technologii w badaniach i rozwoju oraz tempa 
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wygasania technologii. Pełna automatyzacja jest zakłócająca, ponieważ czyni pracę 
ludzką nieistotną dla produkcji, co może prowadzić do bezrobocia technologicznego 
oraz przyspieszenia wzrostu gospodarczego. Przy pozytywnych efektach ubocznych 
technologii w działalności badawczo-rozwojowej (B+R) postęp technologiczny 
i akumulacja kapitału B+R mogą stanowić podwójny motor wzrostu, utrzymujący 
wzrost wykładniczy nawet przy częściowej automatyzacji i bez wzrostu ludności. 
Jako zastosowanie wyprowadzonej teorii przedstawiam przegląd skutków rzeczywi-
stych i hipotetycznych technologii ery cyfrowej (od krosna Jacquarda po sztuczną 
superinteligencję) dla tempa długoterminowego wzrostu oraz przewidywanych 
trendów w zatrudnieniu i udziałach czynników w tworzeniu wartości dodanej.

Introduction

Is the world currently going through a Fourth Industrial Revolution, or a technological breakthrough event 
of an entirely different nature? There is no doubt that growth in GDP per capita and labour productivity has 
massively accelerated since the beginning of the 19th century, and even more so in the 20th century (see e.g. 
Galor [2005], Piketty [2014], Rosling [2018]); so did technological progress. However, when it comes to iden-
tifying the key drivers of this acceleration and its technological underpinnings, the literature is divided. For 
some authors, such as Gordon [2016] or Schwab [2016], there is a continuity between the consecutive waves 
of the Industrial Revolution, see Table 1: each of them adds a new boost to the ongoing technological transfor-
mation and propels the ongoing progress. Others, however, including notably Erik Brynjolfsson and his co-au-
thors (e.g., Brynjolfsson, McAfee [2014], Brynjolfsson, Rock, Syverson [2019]), have emphasized the qualita-
tive difference between industrial technologies of the first two waves and digital technologies of the latter two.

Table 1. Waves of the Industrial Revolution, or the Industrial and Digital Revolution

Rev Years Key technologies

1.0 1770–1840 Steam engine, railroad, mechanical loom

2.0 1870–1920 Internal combustion engine, electricity, telephone, medicine, indoor plumbing

3.0 1960–2010? Digital computer, cell phone, Internet, credit cards

4.0 2010+? artificial intelligence, Internet of Things, cloud computing

Note: According to Gordon [2016], only waves 1–3 had a major impact on productivity; Schwab [2016] also adds wave “4.0” (and indeed largely 
concentrates on it). Brynjolfsson and McAfee [2014] and Growiec [2022a] emphasise the difference between waves 1–2 and 3–4 and identify 
the latter as a qualitatively new Digital Revolution.

Source: Author’s own elaboration.

This paper subscribes to the latter view. Indeed, as I will elaborate in detail below, viewing computers, 
the Internet, smartphones, or artificial intelligence algorithms as achievements of the Industrial Revolution 
(“Industry 3.0–4.0”) is oblivious to the fact that these technologies, as opposed to the technologies of “Indus-
try 1.0–2.0”, operate in the domain of information processing. Due to the non-rivalry of information [Romer, 
1990], technologies of information processing have different properties and generate different macroeconomic 
implications than steam- or electricity-powered machines characteristic of Industry 1.0–2.0, expanding the 
humankind’s capacity to perform physical action. Therefore these technologies should rather be viewed as 
drivers of an entirely separate technological revolution – the Digital Revolution.

It is convenient to frame this discussion using the hardware – software framework [Growiec, 2022a; Growiec, 
Jabłońska, Parteka, 2023], an approach that takes root in the basic laws of physics and, starting from there, 
suggests to replace the usual pair of macroeconomic factors of production – capital and labour – with two 
alternative aggregates: hardware (“brawn”) and software (“brains”), orthogonal to the traditional distinction 
(Figure 1). The framework allows for reliable reduced-form modelling of production processes across both the 
industrial and the digital era, and offers a clear-cut distinction between mechanization – replacement of peo-
ple with machines within hardware – and automation – replacement of people with machines within software.
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Figure 1. Factors of production in the hardware – software framework

Source: Author’s own elaboration.

The contribution of this paper to the literature is twofold. First, I construct a reduced form growth model 
with hardware and software as inputs, extending the previous findings contained in [Growiec, 2023] and allow-
ing to identify the diverse impacts of industrial and digital technologies on long-run growth, factor shares 
and labour demand. Second, as an application of the theory I provide an overview of existing and hypotheti-
cal automation technologies, looking at them from three specific, theoretically motivated angles:
1. Does the technology enable full automation of complex production processes? Can production continue 

without any human input?
2. Does the technology contribute to positive knowledge spillovers in R&D? Does it facilitate new innova-

tions or, to the contrary, does it make “ideas harder to find” [Bloom et al., 2020]?
3. Does the technology help reduce the rate of decay of old knowledge?

The paper links to the literature on the impacts of automation on productivity, employment, wages and 
factor shares [Zeira, 1998; Acemoglu, Autor, 2011; Autor, Dorn, 2013; Graetz, Michaels, 2018; Acemoglu, 
Restrepo, 2018a, 2018b; Andrews, Criscuolo, Gal, 2016; Arntz, Gregory, Zierahn, 2016; Frey, Osborne, 2017; 
Barkai, 2020; Autor et al., 2020; Jones, Kim, 2018; Hemous, Olsen, 2018]. It also addresses the debate on the 
macroeconomic implications of the development of AI and autonomous robots replacing humans in sophis-
ticated, non-routine tasks requiring specialist knowledge [Hanson, 2001; Yudkowsky, 2013; Sachs, Benzell, 
LaGarda, 2015; Benzell et al., 2015; DeCanio, 2016; Graetz, Michaels 2018; Aghion, Jones, Jones, 2019; Berg, 
Buffie, Zanna, 2018; Caselli, Manning, 2019; Benzell, Brynjolfsson, 2019; Brynjolfsson, Rock, Syverson, 2019; 
Davidson, 2021; Trammell, Korinek, 2021; Korinek, Juelfs, 2022; Wei et al., 2022; Eloundou et al., 2023].

The remainder of the paper is structured as follows. Section 2 introduces the hardware – software frame-
work. Section 3 derives the theoretical predictions. Section 4 discusses the implications of a range of existing 
and hypothetical digital-era technologies. Section 5 concludes.

Theoretical Framework

Hardware and Software as Factors of Production

The hardware – software framework [Growiec, 2022a; Growiec, Jabłońska, Parteka, 2023] presumes that 
all output is generated through purposefully initiated physical action. Generating output requires both some 
physical action involving energy – carried out by hardware – and some information describing the action – 
provided by software. This dichotomy mirrors the standpoint of theoretical physics, succinctly summarised by 
Michio Kaku: “I’m a physicist. We rank things by two parameters: energy and information.”
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However, both the physical action and the information processing can be carried out by either people or 
machines. This additional distinction underlies the map of inputs presented in Figure 1. In the hardware – 
software framework, physical capital and human physical labour are fundamentally substitutable inputs con-
tributing to hardware; analogously, human cognitive work and pre-programmed digital software are fundamen-
tally substitutable inputs contributing to software. In turn, both hardware and software are complementary 
and essential in the process. Furthermore, programmable hardware (computers, smartphones, robots, etc.) 
similarly to the human body has double duty, as a means of performing physical action and as a container for 
software – stored information and working algorithms.

The key building block of the hardware – software framework is the general production function featuring 
physical hardware X performing the action, and disembodied software S providing the information:

 Output = F X,S( ).   (1)

I assume that F :R+
2 →R+  is increasing and concave in both factors and such that hardware X and soft-

ware S are essential (i.e., F (0,S) = F (X,0) = 0) and mutually complementary in production (the elasticity of 
substitution between X and S is below unity).

Hardware X (“brawn”) encompasses both the services of physical capital K and human physical labour L, 
where the latter variable excludes any know-how or skill of the worker. In turn, software S (“brains”) includes 
the skills and technological knowledge employed in human cognitive work, H, as well as pre-programmed 
software Ψ – instructions to be performed by programmable hardware. Pre-programmed software Ψ includes 
AI algorithms that learn and improve their performance with new data.

Within hardware X, capital and labour are inessential and substitutable as agents of physical action (elas-
ticity of substitution above unity). This reflects the idea that the same physical actions should lead to the same 
outcomes, regardless of whether they are performed by a human or machine. Analogously with software S: if 
instructions are the same, then the outcomes should be the same too, regardless of whether they have been 
generated by a human brain or a digital information processing unit.

However, we do not know yet whether all essential tasks will eventually be automatable in the future. This 
is important because if certain essential cognitive tasks are never automated, then the reduced-form production 
function should rather assume gross complementarity (elasticity of substitution below unity) between human 
cognitive work and pre-programmed software within software S. For a comprehensive discussion of the map-
ping of partial vs. full task automatability to the elasticity of substitution, please refer to [Growiec, 2022b].

These assumptions lead to the following specification of hardware and software:

 X =G1(L,K),  S =G2(H,Ψ ),  (2)

where the elasticity of substitution in G1 is above one, and in G2  – above one in the full automation scenario, 
and below one in the partial automation scenario. The functions G1 :R+

2 →R+  and G2 :R+
2 →R+  are assumed 

increasing and concave in both inputs. The replacement of L with K within hardware X will be referred to as 
mechanisation, whereas the replacement of H with Ψ within software S will be called automation.

In line with the economic interpretation, human physical labour L =ζN  is assumed to be rivalrous and 
proportional to the number of workers, L =ζN . Physical capital K is also rivalrous but can be unboundedly 
accumulated in per capita terms. In turn, human cognitive work H = AhN  is proportional to technological 
knowledge A, skill level h, and the number of workers N. Technological knowledge A, also interpreted as the 
size of the repository of codes, is non-rivalrous [Romer, 1986; 1990] and accumulable. Skill-adjusted cogni-
tive labour is rivalrous though. Finally, pre-programmed software Ψ = AψχK  is assumed to be proportional 
to technological knowledge A (as above), algorithmic skill level ψ  and the stock of programmable hardware 
χK  on which the software is run. It is assumed that pre-programmed software scales with programmable hard-
ware χK  because of the near zero cost of copying digital software.
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Finally, the hardware – software framework views technological progress (growth in A) as expansion of 
the repository of codes. It is the informational character of technological knowledge A which makes it non-ri-
valrous and, therefore, a source of increasing returns to scale [Romer, 1986; 1990]. Unlike in Romer’s original 
contributions, however, in the hardware – software framework technological knowledge can be put to produc-
tive use by both humans and machines. As a result, technological progress is modeled as software-augmenting.

With these assumptions in hand, the general production function takes the form:

 Output = F G1 ζN,K( ),G2 AhN,AψχK( )( ).  (3)

Reduced-Form Economic Growth Model

Hardware and software are inputs of both production and R&D. The output of production is the final good Y, 
serving both consumption and investment purposes, whereas R&D produces new technological ideas !A . In 
what follows, I modify the framework considered in Growiec [2023], Growiec, Jabłońska, and Parteka [2023] 
to discuss a range of important new scenarios that have not been yet analysed, but which may be critical for 
the assessment of the characteristics and potential of certain existing or hypothetical digital technologies.

I consider the following reduced-form two-sector economic growth model with a production and R&D sector:

 !A =Φ G1 ζN,K( ),G2 AφhN,AφψχK( )( )−ωA,  (4)

 Y = F G1 ζN,K( ),G2 AhN,AψχK( )( ),  (5)

 !K = sY −δK,   (6)

where the term Aφ  (with φ ∈R ) captures software-augmenting knowledge spillovers in R&D. These knowledge 
spillovers represent either “standing on shoulders” effects if φ > 0 [Jones, 1995] or “fishing out ideas” effects 
if φ < 0  [Bloom et al., 2020]. In turn, ω ≥ 0 captures the rate of knowledge decay, interpreted also as knowl-
edge depreciation or obsolescence.

The aggregate production function F :R+
2 →R+  and the idea production function Φ :R+

2 →R+  are 
assumed to have the properties of the general production function F  discussed above.1 I additionally assume 
that F,G1,G2  and Φ are characterised by constant returns to scale. Time t ≥ 0 is continuous.

Finally, I posit that bounded variables (s,h,ψ ,χ ) will eventually stabilise, and so will global human popu-
lation N. Therefore in my derivations I concentrate solely on the dynamics of two state variables of the model, 
K and A, in the long-run limit, treating s,h,ψ ,χ  and N as given constants – just like in the canonical Solow 
model (cf. Solow [1956], Jones [2005]). I also abstract from the optimal allocation of factors and instead assume 
that fractions of hardware and software used in production vs. R&D are always constant. They are included 
in functions F, Φ for compact notation. Analogously, fractions of capital and labour used in hardware vs. soft-
ware are also assumed constant and are included in functions G1,G2.

The two key differences between the above model and that of Growiec [2023] are that (i) knowledge spill-
overs in R&D are now assumed to be software-augmenting, and (ii) knowledge is subject to gradual decay 
over time.

As regards knowledge spillovers in R&D, the assumed specification (5) should be contrasted against two 
literature benchmarks. First, if φ =1 in (5), then the stock of technological knowledge would be included in the 
software term symmetrically in production and R&D [Romer, 1990]. In comparison to this benchmark, φ >1 
implies the existence of positive knowledge spillovers, contributing positively to R&D output beyond the con-
tribution of software S itself. Then R&D output grows more than proportionally with A. In turn, φ <1 implies 

1 Using a CES ideas production function specification, [Growiec, McAdam, Mućk, 2023] demonstrate empirically for the United States 
that capital and labour are gross complements also in R&D (σ R&D <1). 
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the existence of negative knowledge spillovers, diminishing the contribution of software S  to R&D output. 
Then R&D output grows less than proportionally with A. Finally, if φ < 0 , then we arrive at a scenario where 
the negative knowledge spillovers are so strong that they imply “fishing out effects”: ideas are getting harder 
to find [Bloom et al., 2020], and R&D output declines with A.

The second literature benchmark is due to Jones [1995]. In this seminal paper, as well as in all R&D-
based growth literature it spurred, knowledge spillovers in R&D were viewed as “Hicks-neutral,” i.e. affect-
ing R&D output multiplicatively. This exact approach has also been taken in the related paper by Growiec 
[2023]. However, the theoretical base of the hardware – software framework suggests that knowledge spillo-
vers in R&D should be modelled as software-augmenting rather than Hicks-neutral. The reason is that Hicks 
neutrality implies that technical change is also to some degree hardware-augmenting. However, hardware-aug-
menting technical change, interpreted as improvements in the energy efficiency of physical actions, cannot 
be unbounded – as required in my analysis based on (5) – because that would contradict the laws of thermo-
dynamics [Beaudreau, Lightfoot, 2015].

As regards the gradual decay of knowledge, the term −ωA is usually disregarded in the growth literature; 
technology improvements are assumed eternal. However, while the assumption ω = 0 is a useful approxima-
tion facilitating analytical tractability, it is not necessarily guaranteed to hold in reality. First, there are known 
historical episodes when scientific knowledge was lost, such as following the fall of the ancient Roman empire. 
Second, technological knowledge may be subject to decay as science progresses, mirroring the obsolescence of 
old knowledge in light of new findings. Third, mounting technological knowledge may gradually become harder 
to access given the cognitive limitations of the human brain [Jones, 2009; Hidalgo, 2015; Growiec, 2022a].

All these caveats notwithstanding, the rate of knowledge decay is probably very small these days, after 
it has fallen over centuries thanks to discoveries which dramatically increased the durability of knowledge, 
such as the alphabet, writing, the printing press (before the Industrial Revolution), telecommunications and 
audiovisual storage of data (in the industrial era), and ultimately digital memory and the Internet with effi-
cient search engines (in the digital era).

Basic Asymptotic Results

I obtain the following approximations as K /N→∞ (cf. Growiec [2023]):

 X ≈αK  where α =G1(0,1) = lim
x→0

G1(x,1),  (7)

 S ≈ βAψχK  where β =G2(0,1) = lim
x→0

G2(x,1), full automation,  (8)

 S ≈ γ AhN  where γ =G2(1,∞) = lim
y→∞

G2(1, y), partial automation.  (9)

These approximations are valid thanks to the assumption of constant returns to scale as well as above uni-
tary elasticity of substitution in G1 (equation 7) and in G2 (equation 8), and alternatively, below unitary elas-
ticity of substitution in G2 (equation 9).

I also use the following asymptotic notation:

 aK = F(1,∞) = lim
y→∞

F(1, y),  bK =Φ(1,∞) = lim
y→∞

Φ(1, y),  (10)

 aN = F(∞,1) = lim
x→∞

F(x,1),  bN =Φ(∞,1) = lim
x→∞

Φ(x,1).  (11)

By the assumptions of constant returns to scale and less than unitary elasticity of substitution in F and Φ, 
limits in (10)–(11) exist and are finite.
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Predictions for the Digital Era

The reduced-form growth model (4)–(6) produces the following long-run predictions.

Scenario #1: Full Automation of Production and R&D, φ > 0

In this scenario, as K /N→∞ , for computing the long-run dynamics we may approximate X =G1 ζN,K( )≈αK 
X =G1 ζN,K( )≈αK  and S =G2 AhN,AψχK( )≈ βAψχK .

Assuming φ > 0, I obtain the following asymptotic results as K→∞ and A→∞:

 Y = F αK,βAψχK( )=αKF 1,Aψχ ⋅β /α( )→αaKK,  (12)

 !A =αKΦ 1,Aφψχ ⋅β /α( )−ωA→αbKK −ωA,  (13)

 !K ≈ sαaK −δ( )K.   (14)

Hence, when all essential tasks are automatable, the output growth rate will converge to  g = gK = gA = sαaK −δ
g = gK = gA = sαaK −δ , and the long-run growth engine will be the accumulation of programmable hardware [Jones, 

Manuelli, 1990].
The full automation scenario presumes that all essential tasks, both physical and cognitive, will be eventu-

ally performed by machines. This follows from the gross substitutability of people and machines within both 
hardware and software, coupled with the unbounded accumulation of machines per worker (K /N ). Further-
more, with “standing on shoulders” effects in R&D (φ > 0, covering both the case of positive knowledge spill-
overs if φ >1 and weak negative knowledge spillovers if φ ∈ 0,1( )(0, 1)), software will be growing systematically 
faster than hardware, so that asymptotically, given the complementarity between hardware and software, the 
role of software-augmenting R&D as a source of growth will fall to zero. Accordingly, the software share of 
output and the aggregate labour share will gradually decline toward zero as well. In this scenario, demand 
for labour declines, indicating a risk of technological unemployment unless people would be willing to work 
for any wage [Growiec, 2022b; Korinek, Juelfs, 2022]. At the same time, as full automation makes it possible 
to get rid of the development bottleneck due to the limited supply of human cognitive work, this scenario 
offers the prospect of a substantial growth acceleration.

Scenario #2: Full Automation of Production and R&D, φ ≤ 0

The only difference between the current and the previous scenario is that knowledge spillovers in R&D are 
now strongly negative (there are “fishing out” effects, φ ≤ 0). Under full automation, this changes the impli-
cations only slightly.

Assuming φ ≤ 0, I find that asymptotically as K→∞ and A→∞:

 Y = F αK,βAψχK( )=αKF 1,Aψχ ⋅β /α( )→αaKK,  (15)

 !A = βψχAφKΦ α
βψχAφ

,1⎛
⎝⎜

⎞
⎠⎟
−ωA→ βbNψχAφK −ωA,  (16)

 !K ≈ sαaK −δ( )K.   (17)

Hence, the output growth rate will again converge to g = gK = sαaK −δ , and the long-run growth engine 
will be again the accumulation of programmable hardware. Ideas A will follow suit, but due to “fishing out” 
effects in R&D, their growth will be slower in this scenario: gA =

g
1−φ

≤ g .2

2 Proof by solving a Bernoulli differential equation.
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With strongly negative knowledge spillovers (“fishing out” effects), the software input to R&D will be 
growing systematically slower than hardware. Asymptotically, all growth will be generated by the accumu-
lation of machines, owing to the asymptotically linear production function. Software-augmenting R&D will 
provide a negative contribution to growth, albeit the drag from this factor will be bounded and will eventu-
ally fall to zero. Accordingly, the software share of output and the labour share will gradually decline toward 
zero, and so will the demand for labour, indicating a threat of technological unemployment. As full automa-
tion makes it possible to get rid of the development bottleneck due to the limited supply of human cognitive 
work, this scenario offers the prospect of a substantial growth acceleration as well.

Scenario #3: Partial or No Automation, φ >1

As K /N→∞ , for computing the long-run dynamics we may approximate X =G1 ζN,K( )≈αK  and 
S =G2 AhN,AψχK( )≈ γ AhN .

The “partial or no automation” scenario presumes that cognitive tasks cannot be fully automated, and 
therefore people and machines will always remain gross complements within software. This renders human 
cognitive work an essential and asymptotically limiting factor of production.

If φ >1  then an asymptotic balanced growth path is attained as K→∞ and A→∞, with

 g = gA =αbN
K
A
−ω = sF α ,γ A

K
hN

⎛
⎝⎜

⎞
⎠⎟
−δ .  (18)

With positive knowledge spillovers (φ >1) the effective supply of software in the R&D sector will be grow-
ing faster than the supply of hardware (R&D capital). Therefore R&D capital will eventually become the bot-
tleneck of long-run growth. In the long run, the output growth rate is determined by the pace of R&D, which 
is in turn sustained by the accumulation of R&D capital. This is a dual growth engine, and both hardware and 
software grow asymptotically at the same rate g [Growiec, 2022c], which depends on the parametrisation of the 
aggregate production function F. Accordingly, the software share of output and the labour share are expected 
to stabilise at some interior level between zero and one. The demand for labour will be sustained, fending off 
the risk of technological unemployment and guaranteeing that wages will grow at the same rate as output. In 
this scenario, there is no clear indication of growth acceleration or deceleration compared to the industrial era.

Scenario #4: Partial or No Automation, φ =1

If there are no knowledge spillovers in R&D (φ =1), then an asymptotic balanced growth path is attained 
as K→∞  and A→∞ , with

 g = gA =Φ α K
A
,γ hN⎛

⎝⎜
⎞
⎠⎟
−ω = sF α ,γ A

K
hN

⎛
⎝⎜

⎞
⎠⎟
−δ .  (19)

In this case, the long-run output growth rate is determined by the pace of R&D, which is in turn sustained 
by the accumulation of R&D capital. This is again a dual growth engine, and both hardware and software 
grow asymptotically at the same rate g [Growiec, 2022c]. The only difference with respect to the previous 
scenario is that without knowledge spillovers, both R&D capital K and software S (proportional to AN) are 
now growth bottlenecks, and accordingly the long-run growth rate depends on both the parametrisation of 
the aggregate production function F and the ideas production function Φ. The conclusions for factor shares 
and labour demand remain intact. Again, there is no clear indication of growth acceleration or deceleration 
compared to the industrial era.
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Scenario #5: Partial or No Automation, φ <1,ω = 0

At this point, it is helpful to note that none of the above discussions mentioned the rate of knowledge 
decay ω . This is because in all earlier scenarios, growth engines related to the accumulation of programmable 
hardware and, in some cases, also software-augmenting technical change, were sufficiently strong to outrun 
knowledge decay. However, this is no longer guaranteed in the case of partial or no automation and negative 
knowledge spillovers (φ <1( )). I will first consider the case without knowledge decay (ω = 0), and then proceed 
to the case with knowledge decay (ω >1).

With K /N→∞ , for computing the long-run dynamics we may again approximate X =G1 ζN,K( )≈αK  
and S =G2 AhN,AψχK( )≈ γ AhN . If φ <1 and ω = 0 then asymptotically there is unbounded but less than 
exponential growth as K→∞ and A→∞ [Groth, Koch, Steger, 2010; Philippon, 2022], with

 Y = F αK,γ AhN( )→ γ aNAhN,  (20)

 !A =Φ αK,γ AφhN( )→ γ bNAφhN.  (21)

In this case, the long-run output growth rate is determined by the pace of software-augmenting R&D. 

Solving (21), I find that A grows as a power function of time, A(t)∝t
1

1−φ . Capital also grows unboundedly, and 
also sub-exponentially.

In this scenario, only the effective supply of software in the R&D sector is a growth bottleneck. The soft-
ware share of output and the aggregate labour share will grow towards unity. The demand for labour, spe-
cifically cognitive work in the R&D sector, will be systematically increasing. There will be no technological 
unemployment, but there will be a secular growth slowdown.

Scenario #6: Partial or No Automation, φ < 1, ω > 0

In this scenario, there is least growth potential as neither full automation nor technological progress can 
sustain growth over the long run. Specifically the latter growth engine, with negative knowledge spillovers, 
finds it impossible to outrun knowledge decay. I find that if φ <1 and ω > 0 then the economy converges to 
a steady state, satisfying

 0 = !K = sF αK,γ AhN( )−δK, (22)

 0 = !A =Φ αK,γ AφhN( )−ωA.  (23)

Hence, growth eventually comes to a stop. The crucial growth bottleneck is located in the R&D equation, 
reflecting the scarcity of software and specifically ideas for producing new ideas. All factor shares stabilise at 
some interior values.

Taking Stock

We are now in a position to take stock of the results obtained so far. As summarised in Table 2, the future 
of economic growth in the ensuing digital era depends on (i) the possibility of full automation, (ii) whether 
knowledge spillovers in R&D are positive or negative, and (iii) whether knowledge is subject to decay. Premises 
(i)–(iii) have been presented in decreasing order of importance: specifically if (i) full automation is possible, 
then irrespective of (ii)–(iii) one should expect an acceleration of growth, driven by the accumulation of pro-
grammable hardware, a decline of the labour share towards zero, and potential for technological unemploy-
ment (unless people would work for any wage). Otherwise, if (i) full automation is not possible, then there is 
no growth acceleration and (ii) the magnitude of knowledge spillovers in R&D becomes key. Under positive or 
no spillovers, exponential growth is maintained thanks to a dual growth engine: R&D plus the accumulation 
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of R&D capital. The labour share then stabilises at an interior value. Otherwise, if (ii) knowledge  spillovers 
in R&D are negative, then exponential growth cannot be sustained, and then it matters whether (iii) there is 
knowledge decay. Without knowledge decay, there is less-than-exponential but unbounded growth, and the 
key growth engine is R&D, which produces cognitive labour-augmenting technological progress. The labour 
share goes up towards unity. In turn, with knowledge decay, growth peters out and the economy converges 
to a steady state.

Table 2. Summary of theoretical results

Scenario Growth engine Growth rate

Full Automation, φ >0 K acc g = sαaK −δ ,gA =g

Full Automation, φ ≤0 K acc g = sαaK −δ ,gA <g

Partial/No Automation, φ > 1 K acc+LATC gA =g , depends on F (18) 

Partial/No Automation, φ = 1 K acc+LATC gA =g , depends on F ,Φ  (19) 

Partial/No Automation, φ < 1,ω =0 LATC less than exponential

Partial/No Automation, φ < 1, ω > 0 LATC steady state

Notes: K acc – accumulation of programmable hardware; LATC – cognitive labour-augmenting technical change.

Source: Author’s own elaboration.

Overview of Technologies

Let me now present the potential of a range of existing and hypothetical technologies against the theoret-
ical backdrop of the hardware – software framework.

Under this framing, technological progress can be divided into progress in humankind’s capacity to (a) 
perform physical action and (b) process information. Therefore the foremost distinction to observe is between 
mechanisation and automation technologies, replacing people with machines within hardware and software respec-
tively. Of course, no innovation implies a direct one-to-one substitution. Instead, thanks to the new machines, 
the overall productive capacity goes up, and accordingly the productivity of complementary inputs goes up. For 
example, the excavator is a mechanisation technology that replaces the muscle power of a man with a shovel 
with the power of the excavator’s engine, while simultaneously increasing the overall digging capacity per unit 
of time and augmenting the cognitive work of the person operating the excavator, who is now able to work 
much more productively. By contrast, Microsoft Excel is an automation technology that replaces the cogni-
tive work of an office clerk or a company manager. In its essence, it replaces mathematical operations carried 
out in the human brain with digital operations carried out in the computer, while simultaneously increasing 
the overall computational capacity per unit of time and augmenting the unautomated higher-order cognitive 
tasks, such as managing the finances of a firm.

Mechanisation Technologies

Mechanisation technologies were the cornerstone of the first two waves of the Industrial Revolution – 
Industry 1.0–2.0. While there were some accompanying developments during the 19th century, which also 
greatly helped humankind, such as progress in medicine and hygiene, indoor plumbing or the telephone, the 
key drivers of progress at that time were technologies that harnessed the energy encapsulated in fossil fuels 
and put it into productive use.

The key invention of Industry 1.0 was the steam engine, which harnessed the power of hot steam generated 
by burning coal. The steam engine was subsequently applied in pumps, steel mills, rail transport, steamboats, 
and further in a variety of industrial applications, such as in the cotton industry in 19th-century England. Sub-
sequently, Industry 2.0 added the internal combustion engine and the electric engine. Electricity proved to be 
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a particularly potent vehicle of technological progress, with a plethora of applications that became possible 
thanks to the separation of electricity generation (in power plants) from end use. Electrification provided 
access to power across all businesses as well as households.

Mechanisation technologies provided a massive contribution to economic growth in the 19th and 20th 
centuries by increasing the overall productive capacity, specifically by increasing the available physical power 
and the speed of physical actions. Their potential is best realised when the machines performing the requisite 
physical actions have instant access to an energy source and physical action is generated without the input 
of human physical work. Although new mechanisation technologies are developed to this day, the economies 
of speed have already been largely exhausted [Beaudreau, 2020]. Moreover, the available power is constrained 
by the mounting environmental toll from burning fossil fuels – at least until we manage to switch to clean 
renewable energy.

Mechanisation technologies operate in the domain of hardware, and it seems uncontroversial to assume 
that all production processes can be fully mechanised, making human physical work inessential. There is also 
no upper bound in sight on the accumulation of physical capital per worker. What is key, though, is whether 
this growth potential can be effectively tapped by the complementary software. It will be the automation 
technologies, not mechanisation technologies, that can reduce this scarcity and thus play the key role in deter-
mining our future in the digital era.

Automation Technologies

Automation technologies used for information processing are key to what is sometimes called “Indus-
try 3.0–4.0”. They had some earlier predecessors, though. Certain mechanical devices, such as the ancient 
Antikythera mechanism or medieval tower clocks, processed information in an autonomous way for centu-
ries. Next, during the first wave of the Industrial Revolution, a notable breakthrough was achieved with the 
Jacquard loom, the first programmable mechanical device which used punch-card coding. A few decades later, 
another set of 19th-century inventions facilitated the transmission of information: the telegraph and telephone.

But it was not until the digital computer, developed immediately after World War II, that automation 
entered the economy and society on a larger scale. Following the arrival of the computer, the next key devel-
opments of the Digital Revolution were the Internet, cellular telephony, broadband, and smartphone. The 
celebrated recent achievements of “Industry 4.0”, or the second wave of the Digital Revolution, include the 
Internet of Things, cloud computing, and artificial intelligence (AI) algorithms [Schwab, 2016].

Automation technologies contribute to economic growth by accelerating the flow of information, improving 
the market allocation, and chiefly by increasing the cumulated computing power of humankind. Their poten-
tial is best realised when the machines performing the requisite computations have instant access to informa-
tion sources (code and data), and information is processed without the input of human cognitive work. Fur-
thermore, as information is non-rivalrous [Romer, 1990], automation technologies contribute to economic 
growth also by exploiting increasing returns to scale.

Some of the growth effects of automation technologies are achieved from merging hardware and software. 
Examples of such technologies are autonomous machines such as industrial robots, household robots, self-driv-
ing vehicles, and smart appliances, as well as computer – human interfaces, from old-fashioned keyboards and 
monitors to futuristic augmented/virtual reality devices.

Characteristics of Automation Technologies

Let me now characterise automation technologies, focusing on the three key questions emphasised by 
the theory.
1. Does the technology enable full automation of production processes? Can production continue without 

any human input?
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 Thus far we can only partially automate production processes, and our automation technologies are applied 
primarily to routine, repetitive and easily codifiable tasks [Acemoglu, Autor, 2011; Autor, Dorn, 2013; 
Frey, Osborne, 2017]. While the set of automatable tasks is gradually expanding, the key advantage of 
the human brain compared to digital-era machines lies firmly with our broad and adaptive intelligence 
[Bostrom, 2014; Brynjolfsson, McAfee, 2014]. Automation will always be only partial as long as machines 
do not improve upon the breadth of their applicability (the same software algorithm must be able to per-
form a wide range of tasks) and adaptation capability (the algorithm must also be able to learn to perform 
a variety of new tasks).
 It appears that there is just one hypothetical technology that could be a true game changer: development of 
adaptive, general-purpose AI, potentially culminating in superhuman artificial general intelligence (AGI) 
with the capability to self-improve and self-replicate. Setting aside the multitude of threats such hypo-
thetical technology would generate (cf. Yudkowsky [2013], Bostrom [2014], Ord [2020], Aschenbrenner 
[2020], Trammell [2021], Growiec [2022a]), it seems to be the only possible way towards full automation. 
Otherwise, complex production processes would always be only partly automated, and the unautomated 
essential tasks performed by people would constitute a growth bottleneck, making growth acceleration 
impossible while keeping firm demand for human cognitive work.3

 However, while the future of the digital era will be crucially determined by the progress in the breadth 
and adaptivity of AI, there is also a range of auxiliary technologies needed for the AI algorithms to effec-
tively operate: general-purpose computing power, digital memory, the Internet, bandwidth, provision of 
data (using e.g. sensing technologies), and reliable access to energy.

2. Does the technology contribute to positive knowledge spillovers in R&D? Does it facilitate new innova-
tions or, to the contrary, does it make “ideas harder to find”?
 Many digital technologies are contributing to increase the extent of positive knowledge spillovers 
in R&D. Specifically, digitisation of the knowledge base (datasets, books, journals, patents, blueprints, 
etc.), coupled with fast data transmission over the Internet and the development of efficient web search 
engines, helps organise the knowledge and efficiently access the existing information. Digital technolo-
gies also facilitate cooperation in geographically dispersed research teams. At the same time, partial auto-
mation of R&D tasks, thanks to the use of computers with research software, including, to an increasing 
extent, AI algorithms, helps researchers exploit some long-distance links in the knowledge space. These 
links were previously unexplored because of the cognitive limitations of the unaugmented human brain, 
resulting in specialisation in increasingly narrow fields of scientific inquiry.
 Meanwhile, physical limits to progress may exist in specialised lines of research, as seen in economies of 
speed or digital computing capacity measured by the number of transistors in an integrated circuit. The 
existence of such limits implies that, barring a new breakthrough, new ideas may get harder to find over 
time [Bloom et al., 2020]. However, this regularity is general and not affected by the Digital Revolution. 
Thus, on balance, one should expect that knowledge spillovers have improved during the Digital Revolution.

3. Does the technology reduce the rate of decay of old knowledge?
 In principle, the digitisation of the knowledge base and its storage on a decentralised Internet should work 
to reduce the rate of decay of old knowledge. It does incur the risk of the knowledge being destroyed or 
maliciously manipulated, but this risk can be largely mitigated by responsible backup policies. However, 
one could argue that the rate of knowledge decay is very low, perhaps close to zero, not just in the digital 
era, but since the popularisation of printed books during the Renaissance period.

3 Google Chief Economist Hal Varian advises: “Seek to be a scarce complement to increasingly abundant inputs.”
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Overview of Hypothetical Automation Technologies

Now I would like to present an overview of hypothetical automation technologies which can be poten-
tially developed in the future.

The first group of possible developments includes autonomous machines specialised in certain pre-defined 
tasks, such as self-driving vehicles, care robots, cooking robots, and smart refrigerators renewing their inven-
tory. None of these should not have an impact on the three key questions discussed above.

The second group includes new programmable hardware, allowing significant increases in computation 
capacity, such as quantum computing or biological computing. Humankind may one day develop practically 
useful computers that are no longer based on semi-conductors and integrated circuits, possibly increasing the 
available cumulative computing power by orders of magnitude. This would massively boost further progress 
in digital technologies, but on its own – without a sufficient improvement in the quality of code – it would 
act just like the development of new sources of energy, and thus should not have any impact on the three key 
questions discussed above.

The third group includes technologies enhancing the interconnectedness between people and machines, 
such as virtual/augmented reality devices, implantable brain – machine interfaces, healing nanorobots, etc. 
These technologies should have the potential to improve knowledge spillovers in R&D by improving the cog-
nitive capacities of researchers. However, enhancing the capabilities of the human mind in our “race against 
the machine,” if anything, may slow down the potential transition to full automation.

The final group includes AI algorithms. These are, for example, generative AI algorithms producing text, 
visual arts and music, e.g., large language models such as GPT-4 [OpenAI, 2023; Korinek, 2023]; web search 
engines, such as Google; and a variety of other algorithms producing predictions based on big datasets, such as 
AlphaZero and AlphaFold. As argued above, AI algorithms have the potential of driving a disruptive shift from 
partial to full automation. They are also conducive to the creation of positive knowledge spillovers in R&D, 
both via search engines and helping guide human intuition [Davies et al., 2021]. Moreover, AI algorithms can 
have the ability to learn, self-improve (rewrite their own code) and self-replicate. They may potentially also 
tap into the computational capacity of quantum or biological computers. For all these reasons, this last group 
of developments appears most important to watch in the future.

In fact, superhuman AGI may arrive quite soon. We are currently observing a race between OpenAI (GPT), 
Google (Gemini, LaMDA, PaLM), Anthropic (Claude) and Meta (LLaMA) towards ever more capable and gen-
erally applicable AI. The AI capabilities frontier is advancing at breakneck speed. Each week new developments 
are announced, increasing both the optimisation power of state-of-the-art AI and the breadth of its applica-
tion. The timelines to superhuman AGI, while subject to massive uncertainty, shortened significantly after the 
rollout of GPT-4, with the current (November 2023) median prediction of AI experts at metaculus.com being 
as early as 2032. OpenAI themselves provide an even sharper timeline, suggesting that AGI will be created 
most likely before 2030: “While superintelligence seems far off now, we believe it could arrive this decade.”

Concluding Remarks

In this paper, I have constructed a reduced form growth model with hardware and software as inputs, 
making it possible to identify the diverse impacts of industrial and digital technologies on long-run growth, 
factor shares and labour demand. As an application of the theory, I have also provided an overview of existing 
and hypothetical automation technologies, looking at them from three specific, theoretically motivated angles:
1. Does the technology enable full automation of complex production processes? Can production continue 

without any human input?
2. Does the technology contribute to positive knowledge spillovers in R&D? Does it facilitate new innova-

tions or, to the contrary, does it make “ideas harder to find”?
3. Does the technology help reduce the rate of decay of old knowledge?
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The theoretical analysis suggests that the first question is key as knowledge spillovers in R&D and the 
rate of knowledge decay become essentially irrelevant under full automation. Accordingly, in my overview of 
automation technologies, I have emphasized that full automation can be achieved in the future only through 
the development of increasingly powerful, adaptive, general-purpose AI.

When presented against the backdrop of the long history of human civilisation [Growiec, 2022a], the 
Industrial and Digital Revolutions constitute the two most recent swings of the great pendulum of eco-
nomic development (Figure 2), following the earlier Cognitive Revolution (ca. 70,000 years ago – a revolu-
tion in learning), Agricultural Revolution (ca. 10,000 years ago – in access to energy), and the Scientific Rev-
olution (around 1550 CE – in learning). This perspective further underscores that the Industrial Revolution, 
which dramatically improved humankind’s access to energy, should be considered separately from the Digital 
Revolution, which dramatically improved learning by decoupling humankind’s overall information process-
ing power from the cognitive capabilities of the human brain. By contrast, terms such as “Industry 3.0–4.0,” 
which ignore this distinction, are misleading.

Figure 2. The great pendulum of economic development

Source: [Growiec, 2022a]; hardware revolutions are breakthroughs in  humankind’s access to  energy; software revolutions are breakthroughs 
in humankind’s ability to process information and learn.

The great pendulum of economic development swings back and forth between hardware and software, 
at each point in time highlighting the factor which at a specific time undergoes relatively faster expansion. 
Its driving force is the human drive to alleviate the scarcity of resources [Growiec, 2022a]. Each subsequent 
technological revolution is achieved when a mounting scarcity of a factor, whether hardware or software, is 
resolved thanks to a major technological breakthrough. Specifically, in the industrial era, thanks to the rapid 
accumulation of physical capital in the form of machines using energy from fossil fuels, humankind managed 
to overcome the energy scarcity, and eventually information has become relatively scarce, prompting an edu-
cation boom, creation of more inclusive and democratic institutions, and finally the Digital Revolution. Cur-
rently, in the ongoing digital era, we are witnessing a massive buildup of digital data processing power, data 
volume and bandwidth [Hilbert, López, 2011], which helps overcome the information bottleneck. If this pro-
gress continues unabated, particularly in the field of AI, energy may eventually become relatively scarce again, 
prompting the need for the next technological revolution in hardware.

Needless to say, this perspective comes with massive caveats. First and foremost, the prospects of devel-
oping ever more powerful, adaptive, general-purpose AI raises the question of human control. Autonomous 
machines, once installed, must be granted discretion in their decision making; over time, the potential impact 
of these decisions will only grow. The question then is, how much autonomy are people ready to give up, sacri-
ficing their control locally with the hope of achieving accelerated growth and greater autonomy in the bigger 
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picture. Secondly, at the end of the line, the hypothetical superintelligent artificial general intelligence (AGI) 
may contain a maximisation routine that could become a runaway process, escaping any human control and 
posing an existential threat to humanity [Bostrom, 2014; Ord, 2020].
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